

Nouvelles phases dans les systèmes $Bi_2O_3-P_2O_5-MO_y$: une mine d'or pour les physico-chimistes de l'état solide

O. Mentré, M. Colmont, M. Huvé

- UCCS- University of Lille I- ENSCL , France (UMR CNRS 8181)

Unité de Catalyse et de Chimie du Solide de Lille, UMR CNRS 8181

groupe oxydes innovants et phases dérivées

Nouveaux Matériaux à propriétés ciblées (electrochimie, transport/magn ...)

- ightarrow cristallochimie des composés du Bismuth
- ightarrow « Design » structural

• Systèmes chimiques : $Bi_2O_3 - MO - X_2O_5$: diagrammes de phase (M = Ca, Mg, Zn, Co, Ni, Cu, Pb ...X = P, As, V ...)

- Approche structurale prédictive (Design)
- **O** Richesse/flexibilité structurale (ordre vs désordre)
- Cristallochimie particulière : codes contraste en MEHR
- **O** Propriétés "particulières" (non-centrosymétrie, magnetisme ...)

• Chimie du solide : challenge \rightarrow approche prédictive

M.G. Kanatzidis, K.R. Poeppelmeier / Progress in Solid State Chemistry 36 (2007) 1-133

nanostructured metal oxides and chalcogenides, salt-inclusion synthesis, and a palette of preparation techniques for porous materials.

Most research efforts in current solid-state chemistry are concerned with the design and prediction of new structures and materials [2,3]. In general it is difficult to design a phase a priori. Progress has been considerable and we have many cases in which "materials design" is actually possible, e.g. simple isoelectronic elemental substitutions, the intercalation of species into solids, the synthesis of coordination solids based on solid-state structures, and the assembly of templated materials (see elsewhere in this issue). Nevertheless, in most cases the ability to broadly design and predict new phases remains a challenge [4].

« Report from the third workshop on future directions of solid-state chemistry : The status of solid-state chemistry and its impact in the physical sciences », *Progress in Solid State Chemistry* 36 (2007) 1-133

GDR-MICO / CRISTECH – 12 au 15 Octobre 2009 – Aspet – O. Mentré

8

Nouvelles phases 3D dans les systèmes Bi₂O₃-P₂O₅-MO_v

Adequate Building units

Utilisation de polyèdres oxo-centrès en cristallochimie

- Sauerstoff als Koordinationszentrum in Kristallstrukturen, G. Bergerhoff, J. Paeslack 1968. Z. Kristallogr., 126, 112-123 (1968).

- OM₄ tetrahedra and the cationic groups (MO)[™] in rare earth oxides and Oxysalts, P.E. Caro, *Journal of Less-Common Metals*, 16, 367-377 (1968).

- An alternative approach to non-molecular crystal structures, M. O' Keeffe and B.G. Hyde. Structural and Bonding 61, 77-177 (1985).

- [NM₄] tetrahedra in nitride sulfides and chlorides of the trivalent Lanthanides, Th. Schleid, Eur. J. Solid State Inorg. Chem., 33, 227-240 (1996).

- On the influence of light anions (O², N³ and F⁻) on the crystal chemistry of rare-earth metal trichlorides and sesquisulfides, Th. Schleid, *Mater. Sci. Forum*, 315,163-168(1999).

- Types of cationic complexes on thebase of oxocentred [OM₄] tetrahedra in crystal structures of inorganic compounds. S.V. Krivovichev, S.K. Filatov, T.F. Semenova, *Russ.Chem. Rev.* 67, 137-155 (1998).

- Structural principles for minerals and inorganic compounds containing anion-centered tetrahedra. S.V. Krivovichev ,S.K. Filatov , Amer. Mineral. 84, 1099-1106, (1999).... Bi_2O_3 -MO-(P, V, As)₂O₅ (M=Zn,Co,Cu,Ca,Mg,Cd,Pb ...)

→ Rubans formés de O(Bi,M)₄ dans des nouveaux oxophosphates de bismuth

Inorganic Chemistry Laboratory, Oxford University, November 2008, Olivier Mentré – UCCS- Villeneuve d'Ascq

• association de BU's : règles structural

par analogie avec les phases "parent leading to a continuous series of polycations. Theoretically, the ribbon size is unlimited. Up to now, structural

\rightarrow prediction structurale \rightarrow formulation chimique

<u>Ribbon with n O(Bi,M)₄ Tetrahedra :</u>

- Formulation = f(n)
- N surrounding $PO_4 = f(n)$
- « tunnels » vs. « empty » : space between 2 ribbons
- electroneutrality : Bi^{*}/M^{*} at edges ; occupancy of t

Structural Particularities. They are listed above and detailed on Figure 1:

(i) The sizes of the ribbons vary from the single chain (*n* tetrahedra along the width = 1) to n = 2, 3, 4, 5, 6, then

leading to a continuous series of polycations. Theoretically, the ribbon size is unlimited. Up to now, structural types with ribbons of variable width (n = 1, 2, 3, 4, 5, 6and $n = \infty$ O(Bi,M)₄ tetrahedra wide) have been characterized. At this point, the question of the stability of long-sized ribbons against either their slicing in shorter ones in the materials or the creation of infinite layers remains unanswered.

(ii) The number of surrounding PO_4 groups is mathematically defined as a function of n.

(iii) The intergrowth of different sized ribbons is one of the keys of the richness of this structural series.

(iv) Because of their similar inter- and intraribbon organization, most of these materials crystallize in an (pseudo)orthorhombic unit cell with two common parameters. The first one (conventionally, the *a* axis), ~ 11.5 Å, corresponds to the ribbons/PO₄ ordered periodicity perpendicular to the infinite dimension of the ribbons. The second, ~ 5.5 Å (conventionally, the *b* axis) is inherent to the structure of ribbons and corresponds to the height of two edge-shared O(Bi,M)₄ tetrahedra along the infinite axis. Finally, the *c* axis is variable and depends on the size and sequence of ribbons in each particular material.

(v) For $n \le 3$, the tunnels "t" are located in between two edges of ribbons separated by in-plane distances of about 7.5 Å. Four columns of the surrounding PO₄ form their 1D cavities. The occupancy of tunnels is disordered, and at least can we empirically announce that along one *b*-period (~ 5.5 Å) t should contain a maximum of two M^{2+} cations to respect plausible M-M distances.

(vi) The cores C of ribbons are solely occupied by Bi^{3+} while their edges (E) can be suited by M^{2+} or mixed Bi^{3+}/M^{2+} . These mixed Bi^{3+}/M^{2+} positions are generally responsible for a disorder in the inter-ribbon space, namely, the competition between several orientations of the PO₄ groups depending on their local Bi/M environment.

MEHR outil d' analyse structural Chem. Mater., 16, 2628 (2004).

« HREM a usefull tool to formulate new members of the wide Bi³⁺/M²⁺ oxyphosphate series » M. Huvé, M.Colmont. and O. Mentré, *Chemistry of Materials*, **16**, 2628 (2004).

Structure and Formulation from HREM

M. Huvé, M. Colmont , O. mentré, *Inorg. Chem*, **45**, 6604, (2006) M. Huvé, M. Colmont, O. Mentré, *Chem. Mater.***16**, 2628 (2004).

Formulation and synthesis

 $[Bi_{4}(Bi,M)_{4}O_{6}]_{2}[Bi_{2}(Bi,M)_{4}O_{4}]_{2}t_{2}(PO_{4})_{12}$ Single-crystal : $Bi_{3}Cd_{3.72}Co_{1.28}O_{5}(PO_{4})_{3}$, R_{1} = 5.37%, Abmm Z= 4 Powder : a= 11.5322(28)Å, b= 5.4760(13)Å, c= 23.2446(56)Å

It appears rather ambitious to anticipate all possible (n)/(n')member that, ribbons has so far. system an acentric predict and compo formu ing to (n)/(n)ures deduced ferro-i l n = 4 to 12 from t ribbon w have been

already detailed in the previous paragraph devoted to the Formulation of Compounds.

Formulas of *n*-sized ribbons: $[(M/Bi)^{E_4}Bi^{C_{2n-2}}Bi^{E_{2n-2}}Bi^{E_{2n-2}}]^{x+1}$.

Number of neighboring PO₄ groups: 2[(n - 1) - int-[(n - 1)/3]] per ribbon.

Number of created tunnels: Here, two cases should be distinguished depending on the interplay between PO_4 and excressences and on the possibility of creating tunnels between two subsequent PO_4 groups along *c*:

- (i) $n \neq 3n'$: there are int[(n + 1)/3] 1 tunnels per ribbon. The compounds are so-formulated: $(n)t_{(int[n/3]-1)}/(n)t_{(int[n/3]-1)}$ which corresponds to the global formula $[(M/Bi)_4Bi_{2n-2}Bi_{2int[(n-1)/3]} - O_{2n+2int[(n-1)/3]}(PO_4)_{2[(n-1)-int[(n-1)/3]]}t_{int[(n+1)/3]-1},$ with $t = M_{x<2}$.
- (ii) n = 3n': there are n/3 tunnels per ribbon leading to the $(n)t_{n/3}/(n)t_{n/3}$ intergrowth. The general formula is $[(M/Bi)_4Bi_{2n-2}Bi_{2int[(n-1)/3]}O_{2n+2int-1}(n-1)/3](PO_4)_{2[(n-1)-int[(n-1)/3]]}t_{n/3}$, with $t = M_{x<2}$.

MEHR : rubans polycationiques n>3

Composé inconnu ?

Highlight : $n = 3n'+2 \rightarrow brique polaire$

BU polaire \rightarrow Matériaux non-centro ?

a=11.579(3) , b= 5.476(1), ß = 90.28(2)° c= 59.0149(14) S.G. Im ; R₁ = 8.17 %

Génération de 2^{rde} Harmonique (J. Lejay)

Perte de SH signal \rightarrow noircissement des échantillons (Bi^{III} \rightarrow Bi^V) ?

Ferro versus Antiferro

Intercroissances non-centro Bi₂O₃-ZnO/LiO-P₂O₅

Table 3. Summary of the Different Associations of Ribbons Evidenced Is This Work

type of intergrowth	ribbon 1	ribbon 2	sequence	general formula
12.11 c~ 59Å - acentric.	Bi22M'6(Bi.M)4O30	BimM'6(Bi,M)4O28	(12)ttt/(11)tttt	Bi42M'12(Bi,M)8O58(PO4)20My < 14
11,10 c~ 54Å - acentric,	Bi20M'6(Bi,M)4O28	Bi18M'6(Bi,M)4O26	(11)tt/(10)/ttt	Bi38M'12(Bi,M)8O54(PO4)26My < 10
10,6 c~ 41Å - centro	Bi18M'6(Bi,M)4O26	Bi10M'2(Bi,M)4O14	(10)tt/(6)tt	Bi40M'12(Bi,M)8O56(PO4)24My < 8
8,8 c~ 41Å - acentric,	Bi14(Bi,M)4M'4O20	Bi14(Bi,M)4M'4O20	(8)tt/(8)tt	Bi28M'8(Bi,M)8O40(PO4)20My < 8
9,10 c~ 48Å - acentric,	Bi16(Bi,M)4M'4O22	Bi18M'6(Bi,M)4O26	(9)tt/(10)ttt	Bi34M'10(Bi,M)8O48(PO4)24My < 10
11,11 c~ 57Å - acentric,	Bi20M'6(Bi,M)4O28	Bi20M'6(Bi,M)4O28	(11)ttt/(11)ttt	Bi40M'12(Bi,M)8O56(PO4)28My < 12
9,8 c~ 43Å - acentric,	Bi16(Bi,M)4M'4O22	Bi14(Bi,M)4M'4O20	(9)tt/(8)ttt	Bi30M'8(Bi,M)8O42(PO4)20My < 10

Désordre ???

Satellites de modulation ... en général perdu à l'échelle du monocristal

 $Bi_2Pb_{105} Mn_{155} O_3 (PO_4)_2$ modulé, q = (1/2, 0.304, 1/2)

Approche modulée

S.S.G. XCC2(00g)s0s R_{ftrd} = 0.0456 et R_{stellite} = 0.127

edges ribbons : Pb/M ordering along x₄ channels : Pb/M partial ordering along x₄ PO₄ configurations : mainly disordered

Propriétés magnétiques :

Structures complexes (Bi/M/O)

→ topologies particulières des cations paramagnetiques
 → flexibilité structurale (substitution facile Cu²⁺, Ni²⁺, Co²⁺, Zn²⁺, Ca²⁺, Mg²⁺ ...)

GDR-MICO / CRISTECH – 12 au 15 Octobre 2009 – Aspet – O. Mentré

GGA + U

Cu1-O-Cu2 = 92°

→ Échelle frustrée J1/J4

 \rightarrow Frustration J2/J1 = 0.7-0.8

→J3 non dominant

	U = 4 eV	U = 6 eV	U = 8 eV	Phys. Rev. B 76 , 052402, (2007)
J ₁	31.87 (0.82)	21.01 (0.94)	14.37 (1.00)	(1.00)
J ₂	21.49 (0.55)	16.20 (0.72)	11.40 (0.79)	(0.34)
J ₃	13.06 (0.34)	14.47 (0.64)	7.98 (0.56)	(1.00)
J ₄	38.76 (1.00)	22.43 (1.00)	14.34 (1.00)	(0.74)
J ₅	-0.08 (0.00)	0.06 (0.00)	0.02 (0.00)	(0.04)
J ₆	3.10 (0.08)	0.07 (0.00)	-0.13 (-0.01)	(0.03)

Frustration $\alpha > \alpha_c$: Lifshitz point

Split de S(Q) \rightarrow incommensurable

O. Mentré, E. Janod, P. Rabu, M. Whangbo, S. Petit, PRB-rapid comm. 2009

Conclusion : Rich systems, building units and intergrowths

unlimited number of new intergrowths (\rightarrow non-centro)

Towards new properties

ϵ -Bi₂O₃ Synthesis, characterization

-Autogeneous pressure, KOH solution \rightarrow new metastable Bi₂O₃ polymorph

N. Cornei, N. Tancret, F. Abraham, O. Mentré, Inorg. Chem. 45, (2006), 4886

Inorganic Chemistry Laboratory, Oxford University, November 2008, Olivier Mentré – UCCS- Villeneuve d'Ascq

general cases : ordered fragments + local XO₄ ordering

Inorganic Chemistry Laboratory, Oxford University, November 2008, Olivier Mentré – UCCS- Villeneuve d'Ascq

Highlight : $n_{tetateda} \neq 3n$: non-centrosymmetric buliding units !!!

Inorganic Chemistry Laboratory, Oxford University, November 2008, Olivier Mentré – UCCS- Villeneuve d'Ascq

sample $Bi_6LiZn_2P_4O_{22}$

M. Colmont, M. Huve, O. Mentre, JACS, subm.2008

Most of the crystallite

Bi6Li2Zn2P6F6O28 tube

a= 11.5826(3), b= 5.4736(2), c= 58.9041(19)Å and β = 90.55(1)°

Starting contrasts

XRD Single crystal Bi₅₆₈₈ Zn₉₄₈ Li₆₃₅ (PO₄)₂₈O₅₅. R₁ = 8.7%, wR₂ = 10.34%

intergrowth type : (11) ttt/(11) ttt

 $(11) = Bi_{20}(Bi,Zn)_4 Bi_6 O_{28}, t = (Zn, Li)_{x^2}$

intergrowth type :
(9) tt/(10) ttt

Inorganic Chemistry Laboratory, Oxford University, November 2008, Olivier Mentré – UCCS- Villeneuve d'Ascq

Inorganic Chemistry Laboratory, Oxford University, November 2008, Olivier Mentré – UCCS- Villeneuve d'Ascq

Inorganic Chemistry Laboratory, Oxford University, November 2008, Olivier Mentré – UCCS- Villeneuve d'Ascq

Conclusion : Rich system, buiding units and intergrowths

infinite number of new intergrowths (\rightarrow non-centro)

Inorganic Chemistry Laboratory, Oxford University, November 2008, Olivier Mentré – UCCS- Villeneuve d'Ascq

→ 2 complementary views of the same system

... make sure to check both !!!

Unité de Catalyse et de Chimie du Solide - UMR CNRS 8181 ENSCL – Bât. C7 – BP 90108 - 59652 Villeneuve d'Ascq Cedex

- France - 🕿 +33 (0)3.20.43.65.87 Email : mentre@ensc-lille.fr

... collaborators ...

Marie Colmont, UCCS, France Marielle Huvé, UCCS, France Nicoletta Cornei, Iasi, Romania Mostafa Ketatni, Beni-Mellal, Morocco Vacek Petricek, Praha, Czech Republic Francis Abraham, UCCS, France F. Bouree, J.R. Carvajal, LLB-IMN

